
Tightening the Bounds on Cache-
Related Preemption Delay in Fixed

Preemption Point Scheduling

Filip Marković, Jan Carlson, Radu Dobrin
Mälardalen University, Sweden

Content

● Background and Motivation

● Problem formulation

● Proposed approach

● Evaluation

● Conclusions and Future Work

2

Real-time systems

● Non-preempive vs Fully-preemptive Scheduling

3

● Non-preemptive scheduling

4

Real time scheduling

time

𝜏"

𝜏#

Deadline miss!
Taskset unschedulable!

● Fully-preemptive scheduling

5

Real time scheduling

𝜏"

𝜏#

Deadline miss!
Taskset unschedulable!

Preemption related
overhead

Limited Preemptive Scheduling

● Fixed Preemption Point Scheduling (LP-FPP)

6

𝜏"

𝜏#

𝑃𝑃",&

Taskset schedulable!

Preemption-Related Delay

Preemption-related delay consists of different delay types:
bus-related, scheduling-related, pipeline-related, etc.

Cache-Related Preemption Delay (CRPD) has the largest impact
on preemption-related delay.

Therefore, it is important to accurately and as tightly as possible
compute its upper bound. 7

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘

estimated	delay

unschedulable

preemption	
delay

CRPD calculation

8

● CRPD depends upon two important factors:
1. Where the preemption occurs?
2. Which preempting tasks affect the CRPD at this point?

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘

CRPD

1 2

3 2

2 1

1

2

3

𝐶𝑎𝑐ℎ𝑒
	𝑀𝑒𝑚𝑜𝑟𝑦

Block	2
evicted	by	the
preempting	task

Memory	blocks
to	be	used

We compute CRPD by calculating
the maximum number of cache block reloads!

Single reload of the memory block 2

Problem formulation

9

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘 1 2

3 2

2 1

unschedulable

Goal:
Reduce the pessimism
of the approximation!

Over-approximation 1:
Due to accounting infeasible
preemption combinations!

Over-approximation 2:
Due to accounting infeasible
cache block reloads!

Proposed approach

10

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘 1 2

3 2

2 1

unschedulable

Goal:
Reduce the pessimism
of the approximation!

How?
By investigating the infeasible
preemption combinations!

First source of over-approximation

● CRPD for each point is computed in isolation, which leads to:
● Pessimism regarding the preemption scenarios.
● Pessimistic CRPD upper bounds

11

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘
𝑃𝑃& 𝑃𝑃U

WCET	without
CRPD

WCET	with
CRPD

All	preempting tasks
evict		useful	cache	blocks

𝑃𝑃& 𝑃𝑃U
…	same	concept	for	more	points

First source of over-approximation

● What if we want to calculate the CRPD defined per task?
● To account for each CRPD computed in isolation is pessimistic.
● Take into account that preemption scenario at one point affects the

possible preemption scenarios of the succeeding ones.

12

CRPD	computed	in	isolation
for	each	preemption	point

𝑃𝑃& 𝑃𝑃U

affects	CRPD

Preemption/Eviction
Combination

Tightening CRPD bounds

For each task:
1. Identify infeasible preemption scenarios.
2. Among the remaining preemption scenarios identify the one

causing the worst CRPD.

13
𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘

Worst	case
preemption	

𝑃𝑃& 𝑃𝑃U

Tightened	CRPD	
per	task

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘𝑠

𝜏U

𝜏&

Only	𝜏&
preempts

𝜏U fails
to	preempt

Identifying Infeasible Preemption
Scenario?
● Scenario when the preempting task cannot affect the CRPD of both

succeeding preemption points of the preempted task.
● Case when the preempting task cannot be released twice during the

maximum time interval from the start time of one basic block until the
start time of the succeeding basic block.

14

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘
𝑃𝑃& 𝑃𝑃U

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘, 𝜏U

𝑃𝑃& 𝑃𝑃U

	𝜏U	𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑠	𝑃𝑃&
𝑂𝑅
	𝜏U	𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑠	𝑃𝑃U

Maximum time interval between
the first and the last basic block

Why it is not a trivial problem?
● There are many different preemption scenarios. Which one causes

the worst CRPD?

15

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘
𝑃𝑃& 𝑃𝑃U

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘, 𝜏U

𝑃𝑃& 𝑃𝑃U

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜	1: 	𝜏U	𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑠	𝑃𝑃&
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜	2:	 𝜏U	𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑠	𝑃𝑃U

𝐶𝑅𝑃𝐷&
𝐶𝑅𝑃𝐷U

𝑊ℎ𝑖𝑐ℎ	𝑜𝑛𝑒	𝑖𝑠	𝑡ℎ𝑒	𝒎𝒂𝒙𝒊𝒎𝒖𝒎?

Second source of over-approximation

16

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘 1 2

3 2

2 1

unschedulable

Goal:
Reduce the pessimism
of the approximation!

How?
By investigating the infeasible
reloads of the useful cache
blocks!

Second source of over-approximation

17

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘 1 2

2

1 2 1

2

1

2

Cache block 2 can be evicted at any of the preemption points,
but only once, i.e. it can be reloaded only once!

Cache block 2 accessed at the beginning
and at the end of the preempting task.

Existing approaches:
3 cache block reloads

In reality:
1 cache block reload

Solution

18

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔	𝑡𝑎𝑠𝑘

𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑒𝑑	𝑡𝑎𝑠𝑘 1 2

2

1 2 1

2

1

2

1. Identify if there is a possible eviction of the cache block
by the preempting task between the two consecutive accesses.

2.
If there is, account it only once, just before the next
access.

If not, do not account it at all.

Tight approximation of CRPD

19

● Why it is not trivial to tighten the CRPD although we identified the
sources of the over-approximation?

● Joint approach considering the solutions for both sources of over-
approximation.

● We formulate it as a constraint satisfaction problem.

19

1 2

3 2

2 1

unschedulable

Over-approximation 1:
Due to accounting infeasible
preemption combinations!

Over-approximation 2:
Due to accounting infeasible
cache block reloads!

Proposed approach

● Optimization formulation:

● Constraints
●Represent feasible preemption combinations.

● Goal function:
● Identify the preemption scenario causing the worst CRPD bound, accounting

also for the infeasible reloads.

● Output
● Tight CRPD bounds.

20

Preemption scenario − Infeasible reloadsmax	(reloads())

Evaluation

● Goal of the experiment:
● To investigate to what extent the CRPD bounds are tightened,

compared to
● the simplified CRPD approximation and
● optimisation which does not account for the infeasible UCB reloads.

21

General Experiment setup:

2000 generated tasksets per the parameter under investigation
(cache utilisation or the number of tasks in a taskset).

20 30 40 50 60 70 80 90
Cache utilisation (%)

0

500

1000

1500

2000

2500

3000

3500

C
R

PD
 (m

ic
ro

 s
ec

on
ds

) IPR
IP
OA

Evaluation

● Results:
● Tightening improved the CRPD bounds.
● CRPD bounds tightened by 50% to 70%.

22

● Experiment setup:
● Taskset size fixed to 10
● Taskset utilisation fixed to 80%
● Total cache utilisation (20%, 90%)

Infeasible preemptions

Infeasible preemptions and reloads

SOTA over-approximation

Evaluation

23

● Experiment Setup
● Taskset size (3 - 10)
● Total cache utilization fixed to 40%

● Results
● Bounds tightened by 50% to 70%
● Tightening scales well with the

taskset increase.

3 4 5 6 7 8 9 10

Number of tasks

0

500

1000

1500

2000

C
R

P
D

 (
m

ic
ro

 s
e
co

n
d
s) IPR

IP

OA

3 4 5 6 7 8 9 10

Number of tasks

0

1000

2000

3000

a
n
a
ly

si
s

tim
e
 (

m
s)

3 4 5 6 7 8 9 10
0

1000

2000

3000

Infeasible preemptions

Infeasible preemptions and reloads

SOTA over-approximation

Conclusions

● We propose a novel method for computing the CRPD in
sporadic task model scheduled under the Fixed Preemption
Point approach.

● The novelty of the method comes from the more detailed
analysis of the infeasible eviction scenarios and
infeasible useful cache block reloads, compared to the
SOTA.

● The proposed method achieves to significantly tighten the
bounds compared to the previous methods.

24

Future work

● A preemption point selection algorithm that exploits the
proposed method.

● Method for tightening the bounds in Fully-preemptive systems.

25

