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Real-time systems
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● Non-preemptive scheduling
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● Fully-preemptive scheduling
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Limited Preemptive Scheduling

● Fixed Preemption Point Scheduling (LP-FPP)
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Preemption-Related Delay

Preemption-related delay consists of different delay types:
bus-related, scheduling-related, pipeline-related, etc.

Cache-Related Preemption Delay (CRPD) has the largest impact 
on preemption-related delay.

Therefore, it is important to accurately and as tightly as possible 
compute its upper bound. 7
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CRPD calculation
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● CRPD depends upon two important factors:
1. Where the preemption occurs? 
2. Which preempting tasks affect the CRPD at this point?
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Problem formulation
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Proposed approach
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First source of over-approximation

● CRPD for each point is computed in isolation, which leads to:
● Pessimism regarding the preemption scenarios.
● Pessimistic CRPD upper bounds
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First source of over-approximation

● What if we want to calculate the CRPD defined per task?
● To account for each CRPD computed in isolation is pessimistic.
● Take into account that preemption scenario at one point affects the 

possible preemption scenarios of the succeeding ones.
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Tightening CRPD bounds

For each task:
1. Identify infeasible preemption scenarios.
2. Among the remaining preemption scenarios identify the one 

causing the worst CRPD.
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Identifying Infeasible Preemption 
Scenario?
● Scenario when the preempting task cannot affect the CRPD of both 

succeeding preemption points of the preempted task.
● Case when the preempting task cannot be released twice during the 

maximum time interval from the start time of one basic block until the 
start time of the succeeding basic block.
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Why it is not a trivial problem?
● There are many different preemption scenarios. Which one causes 

the worst CRPD? 
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Second source of over-approximation
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Second source of over-approximation
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Cache block 2 can be evicted at any of the preemption points,
but only once, i.e. it can be reloaded only once!

Cache block 2 accessed at the beginning
and at the end of the preempting task.

Existing approaches:
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In reality:
1 cache block reload



Solution
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1. Identify if there is a possible eviction of the cache block
by the preempting task between the two consecutive accesses.

2. 
If there is, account it only once, just before the next
access. 

If not, do not account it at all.



Tight approximation of CRPD
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● Why it is not trivial to tighten the CRPD although we identified the 
sources of the over-approximation?

● Joint approach considering the solutions for both sources of over-
approximation.

● We formulate it as a constraint satisfaction problem.
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Proposed approach

● Optimization formulation:

● Constraints
●Represent feasible preemption combinations.

● Goal function:
● Identify the preemption scenario causing the worst CRPD bound, accounting 

also for the infeasible reloads.

● Output
● Tight CRPD bounds.
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Preemption scenario − Infeasible reloadsmax	(reloads( ) )



Evaluation

● Goal of the experiment:
● To investigate to what extent the CRPD bounds are tightened, 

compared to 
● the simplified CRPD approximation and 
● optimisation which does not account for the infeasible UCB reloads.
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General Experiment setup:

2000 generated tasksets per the parameter under investigation 
(cache utilisation or the number of tasks in a taskset).
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Evaluation

● Results:
● Tightening improved the CRPD bounds.
● CRPD bounds tightened by 50% to 70%.
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● Experiment setup:
● Taskset size fixed to 10
● Taskset utilisation fixed to 80%
● Total cache utilisation (20%, 90%)

Infeasible preemptions

Infeasible preemptions and reloads

SOTA over-approximation



Evaluation
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● Experiment Setup
● Taskset size (3 - 10)
● Total cache utilization fixed to 40%

● Results
● Bounds tightened by 50% to 70%
● Tightening scales well with the 

taskset increase.
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Conclusions

● We propose a novel method for computing the CRPD in 
sporadic task model scheduled under the Fixed Preemption 
Point approach. 

● The novelty of the method comes from the more detailed 
analysis of the infeasible eviction scenarios and 
infeasible useful cache block reloads, compared to the 
SOTA.

● The proposed method achieves to significantly tighten the 
bounds compared to the previous methods.
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Future work

● A preemption point selection algorithm that exploits the 
proposed method.

● Method for tightening the bounds in Fully-preemptive systems.

25


